Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses

نویسندگان

  • Armando Romani
  • Cristina Marchetti
  • Daniela Bianchi
  • Xavier Leinekugel
  • Panayiota Poirazi
  • Michele Migliore
  • Hélène Marie
چکیده

The role of amyloid beta (Aβ) in brain function and in the pathogenesis of Alzheimer's disease (AD) remains elusive. Recent publications reported that an increase in Aβ concentration perturbs pre-synaptic release in hippocampal neurons. In particular, it was shown in vitro that Aβ is an endogenous regulator of synaptic transmission at the CA3-CA1 synapse, enhancing its release probability. How this synaptic modulator influences neuronal output during physiological stimulation patterns, such as those elicited in vivo, is still unknown. Using a realistic model of hippocampal CA1 pyramidal neurons, we first implemented this Aβ-induced enhancement of release probability and validated the model by reproducing the experimental findings. We then demonstrated that this synaptic modification can significantly alter synaptic integration properties in a wide range of physiologically relevant input frequencies (from 5 to 200 Hz). Finally, we used natural input patterns, obtained from CA3 pyramidal neurons in vivo during free exploration of rats in an open field, to investigate the effects of enhanced Aβ on synaptic release under physiological conditions. The model shows that the CA1 neuronal response to these natural patterns is altered in the increased-Aβ condition, especially for frequencies in the theta and gamma ranges. These results suggest that the perturbation of release probability induced by increased Aβ can significantly alter the spike probability of CA1 pyramidal neurons and thus contribute to abnormal hippocampal function during AD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease

Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms.  Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...

متن کامل

The beneficial effects of riluzole on GFAP and iNOS expression in intrahippocampal Aβ rat model of Alzheimer’s disease

Background and Objective: Alzheimer’s disease (AD) is a neurodegenerative disorder specified by deposition of b-amyloid (Ab) and neuronal loss that leads to learning and memory disturbances. One of the most important causes of AD is glutamate-dependent excitotoxicity in brain regions that is vulnerable to AD. According to previous reported results, it was revealed that riluzole, as a glutamate ...

متن کامل

نقش گیرنده‌های نیکوتینی استیل کولین، پروتئین کیناز B و پروتئین کیناز Mζ بر اثر حفاظتی اسید رزمارینیک در مدل بیماری آلزایمر القا شده به وسیله‌ی بتا آمیلوئید (35-25) در موش صحرایی

Background and Objective: Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases and results from the extracellular accumulation of b-amyloid peptides and the resulting neuronal dysfunction. In this study, the role of nicotinic acetylcholine receptors, protein kinase B (PKB) and protein kinase M (PKM) were evaluated in order to examine the mechanism of the protective effe...

متن کامل

Thymoquinone recovers learning function in a rat model of Alzheimer’s disease

Objective: Alzheimer's disease is a neurodegenerative disorder characterized by accumulation of amyloid beta in the hippocampus. In recent decades, herbal medicine has been widely used to treat many neurodegenerative disorders,as in comparison to conventional drugs, herbal remedies exert minimal side effects. Here, the effects of thymoquinone, as the main active component of Nigella sativa, on ...

متن کامل

Protective Role of Apigenin Against Aβ 25-35 Toxicity Via Inhibition of Mitochondrial Cytochrome c Release

Introduction: Cognitive dysfunction is the most common problem of patients with Alzheimer disease (AD). The pathological mechanism of cognitive impairment in AD may contribute to neuronal loss, synaptic dysfunction, and alteration in neurotransmitters receptors. Mitochondrial synapses dysfunction due to the accumulation of amyloid beta (Aβ) is one of the earliest pathological features of AD. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013